Constructing N-soliton solution for the mKdV equation through constrained flows

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 34 L657
(http://iopscience.iop.org/0305-4470/34/46/103)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.101
The article was downloaded on 02/06/2010 at 09:37

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Constructing the N-soliton solution for the mKdV equation through constrained flows

Yunbo Zeng ${ }^{1}$ and Huihui Dai ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People's Republic of China
${ }^{2}$ Department of Mathematics, City University of Hong Kong, Kowloon, Hong Kong, People's Republic of China
E-mail: yzeng@math.tsinghua.edu.cn

Received 13 August 2001
Published 9 November 2001
Online at stacks.iop.org/JPhysA/34/L657

Abstract

Based on the factorization of soliton equations into two commuting integrable x - and t-constrained flows, we derive N-soliton solutions for a mKdV equation via its x - and t-constrained flows. We show that soliton solutions for soliton equations can be constructed directly from the constrained flows.

PACS numbers: $02.30 . \mathrm{Zz}, 02.30 .-\mathrm{f}, 02.90 .+\mathrm{p}, 45.30 .+\mathrm{s}$

1. Introduction

It is well known that there are several methods for deriving the N-soliton solution of soliton equations, such as the inverse scattering method, the Hirota method, the dressing method, the Darboux transformation, etc (see, e.g., [1-3] and references therein). In this letter, we propose a method of constructing N-soliton solutions for a mKdV equation directly through two commuting x - and t-constrained flows obtained from the factorization of the mKdV equation. It was shown in [4-7] that $(1+1)$-dimensional soliton equations can be factorized by x - and t-constrained flows, which can be transformed into two commuting x - and t-finitedimensional integrable Hamiltonian systems. The Lax representation for constrained flows can be deduced from the adjoint representation of the auxiliary linear problem for soliton equations [8]. By means of the Lax representation and the standard method given in [9-11] we are able to introduce the separation variables for constrained flows [12-16] and to establish their Jacobi inversion problem [14-16]. Furthermore, the factorization of soliton equations and separability of the constrained flows allow us to find the Jacobi inversion problem for soliton equations [14-16]. By using the Jacobi inversion technique [17, 18], the N-gap solutions in terms of Riemann theta functions for soliton equations can be obtained, namely the constrained flows can be used to derive the N-gap solution. This letter shows that the x - and t-constrained flows and their Lax representation can also be used to directly construct the N-soliton solution
for soliton equations. In fact, the method proposed in this letter, together with that in the previous paper [19], provides a general procedure to derive N-soliton solutions for soliton equations via their constrained flows.

2. The factorization of the $m K d V$ hierarchy

We first briefly recall the constrained flows of the mKdV hierarchy and their Lax representation. The mKdV hierarchy

$$
\begin{equation*}
q_{t_{2 n+1}}=D b_{2 n+1}=D \frac{\delta H_{2 n+1}}{\delta q} \quad n=0,1, \ldots \tag{2.1}
\end{equation*}
$$

with

$$
H_{2 n+1}=\frac{2 a_{2 n+2}}{2 n+1}
$$

is associated with the reduced AKNS spectral problem for $r=-q$ [1]:

$$
\binom{\psi_{1}}{\psi_{2}}_{x}=U\binom{\psi_{1}}{\psi_{2}} \quad U=\left(\begin{array}{ll}
-\lambda & q \tag{2.2}\\
-q & \lambda
\end{array}\right)
$$

and the evolution equation of the eigenfunction

$$
\begin{equation*}
\binom{\psi_{1}}{\psi_{2}}_{t_{2 n+1}}=V^{(2 n+1)}(q, \lambda)\binom{\psi_{1}}{\psi_{2}} \tag{2.3}
\end{equation*}
$$

where

$$
V^{(2 n+1)}=\sum_{j=0}^{2 n+1}\left(\begin{array}{cc}
a_{j} & b_{j} \tag{2.4}\\
c_{j} & -a_{j}
\end{array}\right) \lambda^{2 n+1-j}
$$

with
$a_{0}=-1, b_{0}=c_{0}=a_{1}=0, b_{1}=-c_{1}=q, a_{2}=-\frac{1}{2} q^{2}, b_{2}=c_{2}=-\frac{1}{2} q_{x}, \ldots$
and, in general,

$$
\begin{align*}
& b_{2 m+1}=-c_{2 m+1}=L b_{2 m-1} \quad L=\frac{1}{4} D^{2}+q D^{-1} q D \quad D=\frac{\mathrm{d}}{\mathrm{~d} x} \\
& D D^{-1}=D^{-1} D=1 \quad b_{2 m}=c_{2 m}=-\frac{1}{2} D b_{2 m-1} \tag{2.5}\\
& a_{2 m+1}=0 \quad a_{2 m}=2 D^{-1} q b_{2 m} .
\end{align*}
$$

For the well known mKdV equation

$$
\begin{equation*}
q_{t}=D b_{3}=\frac{1}{4}\left(q_{x x x}+6 q^{2} q_{x}\right) \tag{2.6}
\end{equation*}
$$

$V^{(3)}$ is

$$
V^{(3)}=\left(\begin{array}{cc}
-\lambda^{3}-\frac{1}{2} q^{2} \lambda & q \lambda^{2}-\frac{1}{2} q_{x} \lambda+\frac{1}{4} q_{x x}+\frac{1}{2} q^{3} \tag{2.7}\\
-q \lambda^{2}-\frac{1}{2} q_{x} \lambda-\frac{1}{4} q_{x x}-\frac{1}{2} q^{3} & \lambda^{3}+\frac{1}{2} q^{2} \lambda
\end{array}\right) .
$$

We have

$$
\begin{equation*}
\frac{\delta \lambda}{\delta q}=\psi_{1}^{2}+\psi_{2}^{2} \quad L\left(\psi_{1}^{2}+\psi_{2}^{2}\right)=\lambda^{2}\left(\psi_{1}^{2}+\psi_{2}^{2}\right) \tag{2.8}
\end{equation*}
$$

The x-constrained flows of the mKdV hierarchy consist of the equations obtained from the spectral problem (2.2) for N distinct real numbers λ_{j} and the restriction of the variational
derivatives for the conserved quantities $H_{2 k_{0}+1}$ (for any fixed k_{0}) and λ_{j} defined by (see, e.g., $[4-7,20,21])$
$\psi_{1 j, x}=-\lambda_{j} \psi_{1 j}+q \psi_{2 j} \quad \psi_{2 j, x}=-q \psi_{1 j}+\lambda_{j} \psi_{2 j} \quad j=1, \ldots, N$
$\frac{\delta H_{2 k_{0}+1}}{\delta q}-\frac{1}{2} \sum_{j=1}^{N} \frac{\delta \lambda_{j}}{\delta q} \equiv b_{2 k_{0}+1}-\frac{1}{2} \sum_{j=1}^{N}\left(\psi_{1 j}^{2}+\psi_{2 j}^{2}\right)=0$.
For $k_{0}=0,(2.9 b)$ gives

$$
\begin{equation*}
q=\frac{1}{2}\left(\left\langle\Psi_{1}, \Psi_{1}\right\rangle+\left\langle\Psi_{2}, \Psi_{2}\right\rangle\right) \tag{2.10}
\end{equation*}
$$

where

$$
\Psi_{k}=\left(\psi_{k 1}, \ldots, \psi_{k N}\right)^{T} \quad k=1,2 \quad \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

By substituting (2.10), (2.9a) becomes a finite-dimensional integrable Hamiltonian system (FDIHS):

$$
\begin{align*}
& \Psi_{1 x}=-\Lambda \Psi_{1}+\frac{1}{2}\left(\left\langle\Psi_{1}, \Psi_{1}\right\rangle+\left\langle\Psi_{2}, \Psi_{2}\right\rangle\right) \Psi_{2}=\frac{\partial \bar{H}_{0}}{\partial \Psi_{2}} \\
& \Psi_{2 x}=-\frac{1}{2}\left(\left\langle\Psi_{1}, \Psi_{1}\right\rangle+\left\langle\Psi_{2}, \Psi_{2}\right\rangle\right) \Psi_{1}+\Lambda \Psi_{2}=-\frac{\partial \bar{H}_{0}}{\partial \Psi_{1}} \tag{2.11}
\end{align*}
$$

with

$$
\bar{H}_{0}=-\left\langle\Lambda \Psi_{1}, \Psi_{2}\right\rangle+\frac{1}{8}\left(\left\langle\Psi_{1}, \Psi_{1}\right\rangle+\left\langle\Psi_{2}, \Psi_{2}\right\rangle\right)^{2} .
$$

Under the constraint (2.10), the t-constrained flow obtained from (2.3) with $V^{(3)}$ given by (2.7) for N distinct λ_{j} can also be written as a FDIHS:

$$
\begin{equation*}
\Psi_{1 t}=\frac{\partial \bar{H}_{1}}{\partial \Psi_{2}} \quad \Psi_{2 t}=-\frac{\partial \bar{H}_{1}}{\partial \Psi_{1}} \tag{2.12}
\end{equation*}
$$

with
$\bar{H}_{1}=-\left\langle\Lambda^{3} \Psi_{1}, \Psi_{2}\right\rangle-\frac{1}{8}\left(\left\langle\Psi_{1}, \Psi_{1}\right\rangle+\left\langle\Psi_{2}, \Psi_{2}\right\rangle\right)^{2}\left\langle\Lambda \Psi_{1}, \Psi_{2}\right\rangle$

$$
\begin{aligned}
& +\frac{1}{4}\left(\left\langle\Psi_{1}, \Psi_{1}\right\rangle+\left\langle\Psi_{2}, \Psi_{2}\right\rangle\right)\left(\left\langle\Lambda^{2} \Psi_{1}, \Psi_{1}\right\rangle+\left\langle\Lambda^{2} \Psi_{2}, \Psi_{2}\right\rangle\right)-\frac{1}{8}\left\langle\Lambda \Psi_{1}, \Psi_{1}\right\rangle^{2} \\
& -\frac{1}{8}\left\langle\Lambda \Psi_{2}, \Psi_{2}\right\rangle^{2}+\frac{1}{4}\left\langle\Lambda \Psi_{1}, \Psi_{1}\right\rangle\left\langle\Lambda \Psi_{2}, \Psi_{2}\right\rangle+\frac{1}{128}\left(\left\langle\Psi_{1}, \Psi_{1}\right\rangle+\left\langle\Psi_{2}, \psi_{2}\right\rangle\right)^{4}
\end{aligned}
$$

The Lax representation for the constrained flows (2.11) and (2.12), which can be obtained from the adjoint representation of the Lax representation for the mKdV hierarchy $[6,8]$, is given by

$$
M_{x}=[\tilde{U}, M] \quad M_{t}=\left[\tilde{V}^{(3)}, M\right]
$$

where \tilde{U} and $\tilde{V}^{(3)}$ are obtained from U and $V^{(3)}$ by inserting (2.10) and the Lax matrix M is of the form
$M=\left(\begin{array}{cc}A(\lambda) & B(\lambda) \\ C(\lambda) & -A(\lambda)\end{array}\right) \quad A(\lambda)=-\lambda-\sum_{j=1}^{N} \frac{\lambda \lambda_{j} \psi_{1 j} \psi_{2 j}}{\lambda^{2}-\lambda_{j}^{2}}$
$B(\lambda)=\frac{1}{2}\left(\left\langle\Psi_{1}, \Psi_{1}\right\rangle+\left\langle\Psi_{2}, \Psi_{2}\right\rangle\right)+\frac{1}{2} \sum_{j=1}^{N} \frac{\lambda_{j}}{\lambda^{2}-\lambda_{j}^{2}}\left[\left(\lambda+\lambda_{j}\right) \psi_{1 j}^{2}-\left(\lambda-\lambda_{j}\right) \psi_{2 j}^{2}\right]$
$C(\lambda)=-\frac{1}{2}\left(\left\langle\Psi_{1}, \Psi_{1}\right\rangle+\left\langle\Psi_{2}, \Psi_{2}\right\rangle\right)+\frac{1}{2} \sum_{j=1}^{N} \frac{\lambda_{j}}{\lambda^{2}-\lambda_{j}^{2}}\left[\left(\lambda-\lambda_{j}\right) \psi_{1 j}^{2}-\left(\lambda+\lambda_{j}\right) \psi_{2 j}^{2}\right]$.
The compatibility of (2.1)-(2.3) ensures that, if Ψ_{1}, Ψ_{2} satisfy two commuting FDIHSs (2.11) and (2.12) simultaneously, then q given by (2.10) is a solution of the mKdV equation (2.6), namely the mKdV equation (2.6) is factorized by the x-constrained flow (2.11) and t-constrained flow (2.12).

3. Constructing the N-soliton solution for the $m K d V$ equation

Hereafter we assume that $q(x, t), \psi_{1 j}, \psi_{2 j}$ be real functions. For a soliton solution we have $q(x, t) \rightarrow 0, \psi_{1 j} \rightarrow 0, \psi_{2 j} \rightarrow 0$, when $|x| \rightarrow \infty$. In order to obtain convenient formulae to construct N-soliton solutions, we need to rewrite all the formulae by using the complex version instead of the vector version. We let

$$
\Phi=\Psi_{1}+\mathrm{i} \Psi_{2} \quad \phi_{j}=\psi_{1 j}+\mathrm{i} \psi_{2 j}
$$

Then (2.11) and (2.12) become

$$
\begin{align*}
& \Phi_{x}=-\Lambda \Phi^{*}-\frac{\mathrm{i}}{2} \Phi^{T} \Phi^{*} \Phi \tag{3.1}\\
& \Phi_{t}=-\Lambda^{3} \Phi^{*}-\frac{\mathrm{i}}{2} \Phi^{T} \Phi^{*} \Lambda^{2} \Phi+\frac{\mathrm{i}}{2} \Lambda \Phi^{*} \Phi^{T} \Lambda \Phi-\frac{\mathrm{i}}{2} \Phi \Phi^{T} \Lambda^{2} \Phi^{*} \tag{3.2}
\end{align*}
$$

where we have used $\bar{H}_{0}=0$.
The generating function of integrals of motion for the system (3.1) and (3.2), $\frac{1}{2} \operatorname{Tr} M^{2}(\lambda)=$ $A^{2}(\lambda)+B(\lambda) C(\lambda)$, gives rise to

$$
A^{2}(\lambda)+B(\lambda) C(\lambda)=\lambda^{2}-2 \bar{H}_{0}+\sum_{j=1}^{N} \frac{F_{j}}{\lambda^{2}-\lambda_{j}^{2}}
$$

where $F_{j}, j=1, \ldots, N$, are N independent integrals of motion for the systems (3.1) and (3.2):

$$
\begin{gathered}
F_{j}=2 \lambda_{j}^{3} \psi_{1 j} \psi_{2 j}-\frac{1}{2} \Phi^{T} \Phi^{*} \lambda_{j}^{2}\left(\psi_{1 j}^{2}+\psi_{2 j}^{2}\right)+\frac{1}{4} \lambda_{j}^{2}\left(\psi_{1 j}^{2}+\psi_{2 j}^{2}\right)^{2}+\frac{1}{2} \sum_{k \neq j} \frac{\lambda_{j}^{2}}{\lambda_{j}^{2}-\lambda_{k}^{2}} P_{k j} \\
P_{k j}=\lambda_{j} \lambda_{k}\left(4 \psi_{1 j} \psi_{2 j} \psi_{1 k} \psi_{2 k}+\psi_{1 j}^{2} \psi_{1 k}^{2}+\psi_{2 j}^{2} \psi_{2 k}^{2}-\psi_{1 j}^{2} \psi_{2 k}^{2}-\psi_{2 j}^{2} \psi_{1 k}^{2}\right) \\
\quad-\lambda_{k}^{2}\left(\psi_{1 j}^{2} \psi_{1 k}^{2}+\psi_{2 j}^{2} \psi_{2 k}^{2}+\psi_{1 j}^{2} \psi_{2 k}^{2}+\psi_{2 j}^{2} \psi_{1 k}^{2}\right) \quad j=1, \ldots, N .
\end{gathered}
$$

Using (3.1), we have

$$
\begin{align*}
& P_{k j}=-\frac{1}{2}\left[\lambda_{k} \phi_{k} \phi_{j}^{*}\left(\lambda_{k} \phi_{k}^{*} \phi_{j}-\lambda_{j} \phi_{k} \phi_{j}^{*}\right)+\lambda_{k} \phi_{j} \phi_{k}^{*}\left(\lambda_{k} \phi_{j}^{*} \phi_{k}-\lambda_{j} \phi_{j} \phi_{k}^{*}\right)\right] \\
& \lambda_{j} \phi_{j} \phi_{j}^{*} \partial_{x}^{-1}\left(\phi_{j}^{2}+\phi_{j}^{* 2}\right)=-\left(\phi_{j} \phi_{j}^{*}\right)^{2} \tag{3.3}\\
& \lambda_{k} \phi_{j} \phi_{k}^{*}-\lambda_{j} \phi_{k} \phi_{j}^{*}=\left(\lambda_{j}^{2}-\lambda_{k}^{2}\right) \partial_{x}^{-1}\left(\phi_{j} \phi_{k}\right) .
\end{align*}
$$

In a similar way to what we did in [19], in order to constructing N-soliton solutions, we have to set $F_{j}=0$. By using (3.1) and (3.3) F_{j} can be rewritten as

$$
\begin{aligned}
F_{j}=\frac{\mathrm{i}}{2} \lambda_{j}^{2} \phi_{j}^{*}[& \left.-\phi_{j x}+\frac{\mathrm{i}}{2} \sum_{k=1}^{N} \lambda_{k} \phi_{k} \partial_{x}^{-1}\left(\phi_{j} \phi_{k}\right)\right] \\
& -\frac{\mathrm{i}}{2} \lambda_{j}^{2} \phi_{j}\left[-\phi_{j x}^{*}-\frac{\mathrm{i}}{2} \sum_{k=1}^{N} \lambda_{k} \phi_{k}^{*} \partial_{x}^{-1}\left(\phi_{j}^{*} \phi_{k}^{*}\right)\right]=0
\end{aligned}
$$

which leads to

$$
\phi_{j x}=-\gamma_{j} \phi_{j}+\frac{\mathrm{i}}{2} \sum_{k=1}^{N} \lambda_{k} \phi_{k} \partial_{x}^{-1}\left(\phi_{j} \phi_{k}\right) \quad j=1, \ldots, N
$$

or equivalently

$$
\begin{equation*}
\Phi_{x}=-\Gamma \Phi+\frac{\mathrm{i}}{2} \partial_{x}^{-1}\left(\Phi \Phi^{T}\right) \Lambda \Phi=-\Gamma \Phi+R \Phi \tag{3.4}
\end{equation*}
$$

where $\Gamma=\operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{N}\right), \gamma_{j}$ are undetermined real numbers and

$$
\begin{equation*}
R=\frac{\mathrm{i}}{2} \partial_{x}^{-1}\left(\Phi \Phi^{T}\right) \Lambda \tag{3.5}
\end{equation*}
$$

Notice that

$$
\begin{equation*}
\frac{\mathrm{i}}{2} \Phi \Phi^{T}=R_{x} \Lambda^{-1} \quad \Lambda R=R^{T} \Lambda \tag{3.6}
\end{equation*}
$$

It follows from (3.4) and (3.5) that

$$
\begin{align*}
R_{x}= & \frac{\mathrm{i}}{2} \partial_{x}^{-1}\left(\Phi_{x} \Phi^{T}+\Phi \Phi_{x}^{T}\right) \Lambda \\
& =\partial_{x}^{-1}\left(-\Gamma R_{x}+R R_{x}-R_{x} \Gamma+R_{x} R\right)=-\Gamma R-R \Gamma+R^{2} \tag{3.7}
\end{align*}
$$

We now show that $\Gamma=\Lambda$. In fact, it is found from (3.4) and (3.7) that

$$
\begin{aligned}
\Phi_{x x} & =-\Gamma \Phi_{x}+R \Phi_{x}+R_{x} \Phi \\
& =-\Gamma(-\Gamma \Phi+R \Phi)+R(-\Gamma \Phi+R \Phi)+\left(-\Gamma R-R \Gamma+R^{2}\right) \Phi \\
& =\Gamma^{2} \Phi+2 R_{x} \Phi=\Gamma^{2} \Phi+\mathrm{i} \Phi \Phi^{T} \Lambda \Phi .
\end{aligned}
$$

On the other hand (3.1) yields

$$
\Phi_{x x}=\Lambda^{2} \Phi+\mathrm{i} \Phi \Phi^{T} \Lambda \Phi
$$

which implies $\Gamma=\Lambda$. Therefore we have

$$
\begin{align*}
\Phi_{x} & =-\Lambda \Phi+R \Phi \tag{3.8}\\
R_{x} & =\frac{\mathrm{i}}{2} \Phi \Phi^{T} \Lambda=-\Lambda R-R \Lambda+R^{2} \tag{3.9}
\end{align*}
$$

To solve (3.8), we first consider the linear system

$$
\Psi_{x}=-\Lambda \Psi
$$

It is easy to see that

$$
\Psi=\left(\alpha_{1}(t) \mathrm{e}^{-\lambda_{1} x}, \ldots, \alpha_{N}(t) \mathrm{e}^{-\lambda_{N} x}\right)^{T}
$$

Take the solution of (3.8) to be of the form

$$
\begin{equation*}
\Phi=(I-M) \Psi \tag{3.10}
\end{equation*}
$$

Then M has to satisfy

$$
\begin{equation*}
M_{x}=M \Lambda-\Lambda M-R+R M \tag{3.11}
\end{equation*}
$$

Comparing (3.11) with (3.9) one finds

$$
\begin{equation*}
M=\frac{1}{2} R \Lambda^{-1}=\frac{\mathrm{i}}{4} \partial_{x}^{-1}\left(\Phi \Phi^{T}\right) \tag{3.12}
\end{equation*}
$$

Equation (3.10) implies that

$$
\begin{equation*}
\Psi=\sum_{n=0}^{\infty} M^{n} \Phi \tag{3.13}
\end{equation*}
$$

By using (3.12) and (3.13), it is found that

$$
\begin{aligned}
\frac{\mathrm{i}}{4} \partial_{x}^{-1}\left(\Psi \Psi^{T}\right) & =\frac{\mathrm{i}}{4} \partial_{x}^{-1} \sum_{n=0}^{\infty} \sum_{l=0}^{n} M^{l} \Phi \Phi^{T} M^{n-l} \\
& =\partial_{x}^{-1} \sum_{n=0}^{\infty} \sum_{l=0}^{n} M^{l} M_{x} M^{n-l}=\sum_{n=1}^{\infty} M^{n}
\end{aligned}
$$

Setting

$$
V=\left(V_{k j}\right)=\frac{\mathrm{i}}{4} \partial_{x}^{-1}\left(\Psi \Psi^{T}\right) \quad V_{k j}=-\frac{\mathrm{i}}{4} \frac{\alpha_{k}(t) \alpha_{j}(t)}{\lambda_{k}+\lambda_{j}} \mathrm{e}^{-\left(\lambda_{k}+\lambda_{j}\right) x}
$$

one obtains

$$
\begin{equation*}
(I+V) \Phi=\Psi \quad \text { or } \quad \Phi=(I-M) \Psi=(I+V)^{-1} \Psi \tag{3.14}
\end{equation*}
$$

Notice that (3.1) and (3.8) give rise to

$$
\begin{equation*}
\Lambda \Phi^{*}=\left(\Lambda-R-\frac{\mathrm{i}}{2} q\right) \Phi \tag{3.15}
\end{equation*}
$$

By inserting (3.9) and (3.15), (3.2) reduces to

$$
\begin{array}{r}
\Phi_{t}=\left[-\Lambda^{2}\left(\Lambda-R-\frac{\mathrm{i}}{2} q\right)-\frac{\mathrm{i}}{2} q \Lambda^{2}+\left(\Lambda-R-\frac{\mathrm{i}}{2} q\right)\left(-\Lambda R-R \Lambda+R^{2}\right)\right. \\
\left.-\left(-\Lambda R-R \Lambda+R^{2}\right)\left(\Lambda-R-\frac{\mathrm{i}}{2} q\right)\right] \Phi=-\Lambda^{3} \Phi+R \Lambda^{2} \Phi \tag{3.16}
\end{array}
$$

Let Ψ satisfy the linear system

$$
\begin{equation*}
\Psi_{t}=-\Lambda^{3} \Psi \tag{3.17}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Psi=\left(\alpha_{1}(t) \mathrm{e}^{-\lambda_{1} x}, \ldots, \alpha_{N}(t) \mathrm{e}^{-\lambda_{N} x}\right)^{T} \quad \alpha_{i}(t)=\beta_{j} \mathrm{e}^{-\lambda_{j}^{3} t} \quad j=1, \ldots, N \tag{3.18}
\end{equation*}
$$

We now show that Φ determined by (3.14) and (3.18) satisfies (3.16). In fact, we have

$$
\begin{aligned}
\Phi_{t} & =-(I+V)^{-1} \frac{\mathrm{i}}{4} \partial_{x}^{-1}\left(\Psi_{t} \Psi^{T}+\Psi \Psi_{t}^{T}\right)(I+V)^{-1} \Psi+(I+V)^{-1} \Psi_{t} \\
& =(1-M)\left(\Lambda^{3} V+V \Lambda^{3}\right) \Phi-(1-M) \Lambda^{3}(1+V) \Phi \\
& =-\Lambda^{3} \Phi+(I-M) V \Lambda^{3} \Phi+M \Lambda^{3} \Phi \\
& =-\Lambda^{3} \Phi+2 M \Lambda^{3} \Phi=-\Lambda^{3} \Phi+R \Lambda^{2} \Phi .
\end{aligned}
$$

Therefore Φ given by (3.14) and (3.18) satisfies (3.1) and (3.2) simultaneously, and $q=\Phi^{T} \Phi^{*}$ is the solution of the mKdV equation (2.6). Notice that

$$
\begin{aligned}
& \partial_{x}\left(\Psi^{T} \Phi\right)=-\Psi^{T} \Lambda \Phi+\Psi^{T}(-\Lambda+R) \Phi \\
&=\Psi^{T}(-2 I+2 M) \Lambda \Phi=-2 \Phi^{T} \Lambda \Phi \\
& q_{x}=\frac{1}{2}\left(\Phi_{x}^{T} \Phi^{*}+\Phi^{T} \Phi_{x}^{*}\right)=\frac{1}{2}\left[\left(-\Phi^{* T} \Lambda-\frac{\mathrm{i}}{2} q \Phi^{T}\right) \Phi^{*}+\Phi^{T}\left(-\Lambda \Phi+\frac{\mathrm{i}}{2} q \Phi^{*}\right)\right] \\
&=-\frac{1}{2}\left(\Phi^{* T} \Lambda \Phi^{*}+\Phi^{T} \Lambda \Phi\right)=-\operatorname{Re}\left(\Phi^{T} \Lambda \Phi\right) .
\end{aligned}
$$

So we have

$$
\begin{equation*}
q=\frac{1}{2} \operatorname{Re}\left(\Psi^{T} \Phi\right)=\frac{1}{2} \operatorname{Re} \sum_{k=1}^{N} \alpha_{k}(t) \mathrm{e}^{-\lambda_{k} x} \phi_{k} \tag{3.19}
\end{equation*}
$$

Finally, as pointed out in [1], formulae (3.14) and (3.19) give rise to the well known N-soliton solution of a mKdV equation (2.6)

$$
u=2 \partial_{x} \operatorname{Im} \ln (\operatorname{det}(I+V)) .
$$

4. Conclusion

We first factorize the mKdV equation into two commuting integrable x - and t-constrained flows, then use them and their Lax representation to directly derive the N-soliton solution for a mKdV equation. The method proposed in the present letter and a previous paper [19] provides a general procedure for constructing N-soliton solutions for soliton equations via their x - and t-constrained flows and can be applied to other soliton equations.

This work was supported in part by a grant from City University of Hong Kong (Project no 7001072) and by the Special Funds for Chinese Major Basic Research Project 'Nonlinear Science'.

References

[1] Ablowitz M and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia, PA: SIAM)
[2] Newell A C 1985 Soliton in Mathematics and Physics (Philadelphia, PA: SIAM)
[3] Faddeev L D and Takjtajan L A 1987 Hamiltonian Methods in the Theory of Solitons (Berlin: Springer)
[4] Cao Cewen 1991 Acta Math. Sin. New Series 17216
[5] Zeng Yunbo 1991 Phys. Lett. A 160541
[6] Zeng Yunbo 1994 Physica D 73171
[7] Ma W X and Strampp W 1994 Phys. Lett. A 185277
[8] Zeng Yunbo and Li Yishen 1993 J. Phys. A: Math. Gen. 26 L273
[9] Sklyanin E K 1989 J. Sov. Math. 472473
[10] Kuznetsov V B 1992 J. Math. Phys. 333240
[11] Sklyanin E K 1995 Theor. Phys. Suppl. 11835
[12] Eilbeck J C, Enol'skii V Z, Kuznetsov V B and Tsiganov A V 1994 J. Phys. A: Math. Gen. 27567
[13] Kulish P P, Rauch-Wojciechowski S and Tsiganov A V 1996 J. Math. Phys. 373463
[14] Zeng Yunbo 1997 J. Math. Phys. 38321
[15] Zeng Yunbo 1997 J. Phys. A: Math. Gen. 303719
[16] Zeng Yunbo and Ma W X 1999 Physica A 2741
[17] Dubrovin B A 1981 Russ. Math. Surv. 3611
[18] Its A and Matveev V 1975 Teor. Mat. Fiz. 2351
[19] Zeng Yunbo 2000 J. Phys. A: Math. Gen. 33 L115
[20] Antonowicz M and Rauch-Wojciechowski S 1992 Phys. Lett. A 171303
[21] Ragnisco O and Rauch-Wojciechowski S 1992 Inverse Problems 8245

