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Abstract
Based on the factorization of soliton equations into two commuting integrable
x- and t-constrained flows, we deriveN -soliton solutions for a mKdV equation
via its x- and t-constrained flows. We show that soliton solutions for soliton
equations can be constructed directly from the constrained flows.

PACS numbers: 02.30.Zz, 02.30.-f, 02.90.+p, 45.30.+s

1. Introduction

It is well known that there are several methods for deriving the N -soliton solution of soliton
equations, such as the inverse scattering method, the Hirota method, the dressing method,
the Darboux transformation, etc (see, e.g., [1–3] and references therein). In this letter, we
propose a method of constructing N -soliton solutions for a mKdV equation directly through
two commuting x- and t-constrained flows obtained from the factorization of the mKdV
equation. It was shown in [4–7] that (1 + 1)-dimensional soliton equations can be factorized
by x- and t-constrained flows, which can be transformed into two commuting x- and t-finite-
dimensional integrable Hamiltonian systems. The Lax representation for constrained flows
can be deduced from the adjoint representation of the auxiliary linear problem for soliton
equations [8]. By means of the Lax representation and the standard method given in [9–11]
we are able to introduce the separation variables for constrained flows [12–16] and to establish
their Jacobi inversion problem [14–16]. Furthermore, the factorization of soliton equations and
separability of the constrained flows allow us to find the Jacobi inversion problem for soliton
equations [14–16]. By using the Jacobi inversion technique [17, 18], the N -gap solutions in
terms of Riemann theta functions for soliton equations can be obtained, namely the constrained
flows can be used to derive theN -gap solution. This letter shows that the x- and t-constrained
flows and their Lax representation can also be used to directly construct theN -soliton solution
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for soliton equations. In fact, the method proposed in this letter, together with that in the
previous paper [19], provides a general procedure to derive N -soliton solutions for soliton
equations via their constrained flows.

2. The factorization of the mKdV hierarchy

We first briefly recall the constrained flows of the mKdV hierarchy and their Lax representation.
The mKdV hierarchy

qt2n+1 = Db2n+1 = D
δH2n+1

δq
n = 0, 1, . . . (2.1)

with

H2n+1 = 2a2n+2

2n + 1

is associated with the reduced AKNS spectral problem for r = −q [1]:(
ψ1

ψ2

)
x

= U

(
ψ1

ψ2

)
U =

( −λ q

−q λ

)
(2.2)

and the evolution equation of the eigenfunction(
ψ1

ψ2

)
t2n+1

= V (2n+1)(q, λ)

(
ψ1

ψ2

)
(2.3)

where

V (2n+1) =
2n+1∑
j=0

(
aj bj
cj −aj

)
λ2n+1−j (2.4)

with

a0 = −1, b0 = c0 = a1 = 0, b1 = −c1 = q, a2 = − 1
2q

2, b2 = c2 = − 1
2qx, . . .

and, in general,

b2m+1 = −c2m+1 = Lb2m−1 L = 1
4D

2 + qD−1qD D = d

dx
DD−1 = D−1D = 1 b2m = c2m = − 1

2Db2m−1

a2m+1 = 0 a2m = 2D−1qb2m.

(2.5)

For the well known mKdV equation

qt = Db3 = 1
4 (qxxx + 6q2qx) (2.6)

V (3) is

V (3) =
( −λ3 − 1

2q
2λ qλ2 − 1

2qxλ + 1
4qxx + 1

2q
3

−qλ2 − 1
2qxλ− 1

4qxx − 1
2q

3 λ3 + 1
2q

2λ

)
. (2.7)

We have

δλ

δq
= ψ2

1 + ψ2
2 L(ψ2

1 + ψ2
2 ) = λ2(ψ2

1 + ψ2
2 ). (2.8)

The x-constrained flows of the mKdV hierarchy consist of the equations obtained from
the spectral problem (2.2) for N distinct real numbers λj and the restriction of the variational



Letter to the Editor L659

derivatives for the conserved quantities H2k0+1 (for any fixed k0) and λj defined by (see,
e.g., [4–7, 20, 21])

ψ1j,x = −λjψ1j + qψ2j ψ2j,x = −qψ1j + λjψ2j j = 1, . . . , N (2.9a)

δH2k0+1

δq
− 1

2

N∑
j=1

δλj

δq
≡ b2k0+1 − 1

2

N∑
j=1

(ψ2
1j + ψ2

2j ) = 0. (2.9b)

For k0 = 0, (2.9b) gives

q = 1
2 (〈�1, �1〉 + 〈�2, �2〉) (2.10)

where

�k = (ψk1, . . . , ψkN)
T k = 1, 2 � = diag(λ1, . . . , λN).

By substituting (2.10), (2.9a) becomes a finite-dimensional integrable Hamiltonian system
(FDIHS):

�1x = −��1 +
1

2
(〈�1, �1〉 + 〈�2, �2〉)�2 = ∂H 0

∂�2

�2x = −1

2
(〈�1, �1〉 + 〈�2, �2〉)�1 +��2 = −∂H 0

∂�1

(2.11)

with

H 0 = −〈��1, �2〉 + 1
8 (〈�1, �1〉 + 〈�2, �2〉)2.

Under the constraint (2.10), the t-constrained flow obtained from (2.3) with V (3) given by (2.7)
for N distinct λj can also be written as a FDIHS:

�1t = ∂H 1

∂�2
�2t = −∂H 1

∂�1
(2.12)

with

H 1 = −〈�3�1, �2〉 − 1
8 (〈�1, �1〉 + 〈�2, �2〉)2〈��1, �2〉

+ 1
4 (〈�1, �1〉 + 〈�2, �2〉)(〈�2�1, �1〉 + 〈�2�2, �2〉)− 1

8 〈��1, �1〉2

− 1
8 〈��2, �2〉2 + 1

4 〈��1, �1〉〈��2, �2〉 + 1
128 (〈�1, �1〉 + 〈�2, ψ2〉)4.

The Lax representation for the constrained flows (2.11) and (2.12), which can be obtained
from the adjoint representation of the Lax representation for the mKdV hierarchy [6, 8], is
given by

Mx = [Ũ ,M] Mt = [Ṽ (3),M]

where Ũ and Ṽ (3) are obtained from U and V (3) by inserting (2.10) and the Lax matrix M is
of the form

M =
(
A(λ) B(λ)

C(λ) −A(λ)
)

A(λ) = −λ−
N∑
j=1

λλjψ1jψ2j

λ2 − λ2
j

B(λ) = 1

2
(〈�1, �1〉 + 〈�2, �2〉) +

1

2

N∑
j=1

λj

λ2 − λ2
j

[(λ + λj )ψ
2
1j − (λ− λj )ψ

2
2j ]

C(λ) = −1

2
(〈�1, �1〉 + 〈�2, �2〉) +

1

2

N∑
j=1

λj

λ2 − λ2
j

[(λ− λj )ψ
2
1j − (λ + λj )ψ

2
2j ].

The compatibility of (2.1)–(2.3) ensures that, if �1, �2 satisfy two commuting
FDIHSs (2.11) and (2.12) simultaneously, then q given by (2.10) is a solution of the mKdV
equation (2.6), namely the mKdV equation (2.6) is factorized by the x-constrained flow (2.11)
and t-constrained flow (2.12).
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3. Constructing the N -soliton solution for the mKdV equation

Hereafter we assume that q(x, t), ψ1j , ψ2j be real functions. For a soliton solution we have
q(x, t) → 0, ψ1j → 0, ψ2j → 0, when |x| → ∞. In order to obtain convenient formulae
to construct N -soliton solutions, we need to rewrite all the formulae by using the complex
version instead of the vector version. We let

! = �1 + i�2 φj = ψ1j + iψ2j .

Then (2.11) and (2.12) become

!x = −�!∗ − i

2
!T!∗! (3.1)

!t = −�3!∗ − i

2
!T!∗�2! +

i

2
�!∗!T�!− i

2
!!T�2!∗ (3.2)

where we have used H 0 = 0.
The generating function of integrals of motion for the system (3.1) and (3.2), 1

2 TrM2(λ) =
A2(λ) + B(λ)C(λ), gives rise to

A2(λ) + B(λ)C(λ) = λ2 − 2H 0 +
N∑
j=1

Fj

λ2 − λ2
j

whereFj , j = 1, . . . , N , areN independent integrals of motion for the systems (3.1) and (3.2):

Fj = 2λ3
jψ1jψ2j − 1

2!
T!∗λ2

j (ψ
2
1j + ψ2

2j ) + 1
4λ

2
j (ψ

2
1j + ψ2

2j )
2 + 1

2

∑
k �=j

λ2
j

λ2
j − λ2

k

Pkj

Pkj = λjλk(4ψ1jψ2jψ1kψ2k + ψ2
1jψ

2
1k + ψ2

2jψ
2
2k − ψ2

1jψ
2
2k − ψ2

2jψ
2
1k)

−λ2
k(ψ

2
1jψ

2
1k + ψ2

2jψ
2
2k + ψ2

1jψ
2
2k + ψ2

2jψ
2
1k) j = 1, . . . , N.

Using (3.1), we have

Pkj = − 1
2 [λkφkφ

∗
j (λkφ

∗
k φj − λjφkφ

∗
j ) + λkφjφ

∗
k (λkφ

∗
j φk − λjφjφ

∗
k )]

λjφjφ
∗
j ∂

−1
x (φ2

j + φ∗2
j ) = −(φjφ∗

j )
2

λkφjφ
∗
k − λjφkφ

∗
j = (λ2

j − λ2
k)∂

−1
x (φjφk).

(3.3)

In a similar way to what we did in [19], in order to constructing N -soliton solutions, we have
to set Fj = 0. By using (3.1) and (3.3) Fj can be rewritten as

Fj = i

2
λ2
jφ

∗
j

[
− φjx +

i

2

N∑
k=1

λkφk∂
−1
x (φjφk)

]

− i

2
λ2
jφj

[
− φ∗

jx − i

2

N∑
k=1

λkφ
∗
k ∂

−1
x (φ∗

j φ
∗
k )

]
= 0

which leads to

φjx = −γjφj +
i

2

N∑
k=1

λkφk∂
−1
x (φjφk) j = 1, . . . , N

or equivalently

!x = −&! +
i

2
∂−1
x (!!T )�! = −&! + R! (3.4)

where & = diag(γ1, . . . , γN), γj are undetermined real numbers and

R = i

2
∂−1
x (!!T )�. (3.5)
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Notice that
i

2
!!T = Rx�

−1 �R = RT�. (3.6)

It follows from (3.4) and (3.5) that

Rx = i

2
∂−1
x (!x!

T +!!T
x )�

= ∂−1
x (−&Rx + RRx − Rx& + RxR) = −&R − R& + R2. (3.7)

We now show that & = �. In fact, it is found from (3.4) and (3.7) that

!xx = −&!x + R!x + Rx!

= −&(−&! + R!) + R(−&! + R!) + (−&R − R& + R2)!

= &2! + 2Rx! = &2! + i!!T�!.

On the other hand (3.1) yields

!xx = �2! + i!!T�!

which implies & = �. Therefore we have

!x = −�! + R! (3.8)

Rx = i

2
!!T� = −�R − R� + R2. (3.9)

To solve (3.8), we first consider the linear system

�x = −��.
It is easy to see that

� = (α1(t)e
−λ1x, . . . , αN(t)e

−λNx)T .

Take the solution of (3.8) to be of the form

! = (I −M)�. (3.10)

Then M has to satisfy

Mx = M�−�M − R + RM. (3.11)

Comparing (3.11) with (3.9) one finds

M = 1

2
R�−1 = i

4
∂−1
x (!!T ). (3.12)

Equation (3.10) implies that

� =
∞∑
n=0

Mn!. (3.13)

By using (3.12) and (3.13), it is found that

i

4
∂−1
x (��T ) = i

4
∂−1
x

∞∑
n=0

n∑
l=0

Ml!!TMn−l

= ∂−1
x

∞∑
n=0

n∑
l=0

MlMxM
n−l =

∞∑
n=1

Mn.

Setting

V = (Vkj ) = i

4
∂−1
x (��T ) Vkj = − i

4

αk(t)αj (t)

λk + λj
e−(λk+λj )x
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one obtains

(I + V )! = � or ! = (I −M)� = (I + V )−1�. (3.14)

Notice that (3.1) and (3.8) give rise to

�!∗ =
(
�− R − i

2
q

)
!. (3.15)

By inserting (3.9) and (3.15), (3.2) reduces to

!t =
[
−�2

(
�− R − i

2
q

)
− i

2
q�2 +

(
�− R − i

2
q

)
(−�R − R� + R2)

−(−�R − R� + R2)

(
�− R − i

2
q

)]
! = −�3! + R�2!. (3.16)

Let � satisfy the linear system

�t = −�3�. (3.17)

Then

� = (α1(t)e
−λ1x, . . . , αN(t)e

−λNx)T αi(t) = βje
−λ3

j t j = 1, . . . , N. (3.18)

We now show that ! determined by (3.14) and (3.18) satisfies (3.16). In fact, we have

!t = −(I + V )−1 i

4
∂−1
x (�t�

T +��T
t )(I + V )−1� + (I + V )−1�t

= (1 −M)(�3V + V�3)!− (1 −M)�3(1 + V )!

= −�3! + (I −M)V�3! +M�3!

= −�3! + 2M�3! = −�3! + R�2!.

Therefore! given by (3.14) and (3.18) satisfies (3.1) and (3.2) simultaneously, and q = !T!∗

is the solution of the mKdV equation (2.6). Notice that

∂x(�
T!) = −�T�! +�T (−� + R)!

= �T (−2I + 2M)�! = −2!T�!

qx = 1

2
(!T

x !
∗ +!T!∗

x) = 1

2

[(
−!∗T �− i

2
q!T

)
!∗ +!T

(
−�! +

i

2
q!∗

)]

= − 1
2 (!

∗T �!∗ +!T�!) = −Re (!T�!).

So we have

q = 1
2 Re (�T!) = 1

2 Re
N∑
k=1

αk(t)e
−λkxφk. (3.19)

Finally, as pointed out in [1], formulae (3.14) and (3.19) give rise to the well knownN -soliton
solution of a mKdV equation (2.6)

u = 2∂xIm ln(det (I + V )).

4. Conclusion

We first factorize the mKdV equation into two commuting integrable x- and t-constrained
flows, then use them and their Lax representation to directly derive theN -soliton solution for a
mKdV equation. The method proposed in the present letter and a previous paper [19] provides
a general procedure for constructing N -soliton solutions for soliton equations via their x- and
t-constrained flows and can be applied to other soliton equations.
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